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The nonlinear dynamics of journal bearings

By J. BRiInDLEY,! M. D. SAvAGcE! AND C. M. TAYLOR?

Departments of Applied Mathematical Studies* and Mechanical Engineering® and
Centre for Nonlinear Studies, University of Leeds, Leeds LS2 9JT, UK.

P

The journal bearing is ubiquitous in moving mechanical systems, and is a major
potential target for study in the field of lubrication theory. Despite this, theoretical
understanding of its dynamic behaviour is far from complete; in particular the
essentially nonlinear interplay of rotor dynamics and fluid dynamics of the lubricant
has been studied only very recently. Our own investigations have been mainly
numerical, and have revealed a wide range of qualitative behaviour. They have
confirmed the great importance of cavitation of the lubricant, and the sensitivity to
geometrical features of the bearing. Additionally they have enabled us to identify the
crucial non-dimensional parameters and their critical values. Finally they have
stimulated analytical approaches (e.g. searches for Hopf bifurcations).

In this paper we exploit the conceptual approach of dynamical systems theory to
present many of our results in a succinct form. Our aim is to make clear not only
the extent of understanding of the problem, but also the present shortcomings of
theory that require further study.
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1. Introduction

The journal or rotor bearing is familiar to all engineers; indeed .it is virtually
ubiquitous in moving mechanical systems. The basic configuration consists of a
journal or rotor, of cylindrical shape, turning relative to a surrounding bearing (or
stator). Each component is usually circular, or nearly so; efficient operation requires
the presence of a fluid lubricant in the space between them. Physical contact between
the journal and the bearing usually results in a failure of the system (in practice often
spectacularly so), and a satisfactory operating state must not permit this to occur.
This requirement clearly puts a tight geometrical constraint on the excursions of the
centre of the rotor relative to that of the bearing; it must either remain stationary
or move in a closed orbit of limited extent. (In a theoretical sense, suitably bounded
chaotic motions might not be disastrous; in practice they would almost certainly be
undesirable.)

Theoretical models of the system describe the motion of the rotor centre on the
basis of newtonian mechanics; the simplest models assume that the rotor and bearing
are rigid. The forces acting are, on the one hand, the mass of the rotor together with
the load (varying) exerted by the rest of the connected mechanical system, and, on
the other hand, the stress exerted by the fluid lubricant on the surface of the rotor.
Because the flow of the lubricant is itself driven by the rotor, this is a situation of
strong feedback, highly nonlinear for even the crudest models of the fluid flow.

Successful analysis depends on a number of approximations and simplifications,
and most of our results (and, as far as we know, all those of other authors) have used
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the Reynolds approximation to the Navier—Stokes equations of motion for the fluid.
Under certain circumstances, however, inertial effects in the lubricant can be
important (Collins et al. 1986).

Early integrations of the equations of motion were almost entirely numerical,
using the Reynolds approximation (Brindley et al. 1979). It rapidly became clear
that failure of the bearing was inevitable when the lubricating film completely filled
the gap between rotor and bearing. Stronger asymmetries of the fluid stress forces
than can be produced in such a model are necessary to bound the motion of the rotor
centre sufficiently. This result is borne out by practical experience ; many ‘successful’
bearings have geometrical asymmetries, often developed by trial and error. For
simplicity we restrict our consideration in this paper to circular shapes for both rotor
and bearing; some effects of asymmetric geometry have been reported elsewhere
(Brindley et al. 1986a, b).

One flow feature of dominant influence in the case of a liquid lubricant is cavitation
of the liquid, usually arising through ‘ventilation’, the invasion by air of regions of
the flow with subambient pressures (Brindley et al. 1983). The extent, position and
motion of any cavity is of crucial importance in determining the motion of the rotor,
and the correct modelling of cavitation is a challenging and important problem.
Several reviews exist in the literature (Dowson & Taylor 1979), and we remark on the
more widely used models in §2.

We stress in this paper the status of the problem as one of conceptual simplicity
but substantial engineering importance and potentially great richness of behaviour.
A combination of numerical integrations and analytical methods has revealed the
essentials of this behaviour for the unforced, balanced-mass rotor, and established
the foundations for the more demanding but realistic situation in which one or more
of time varying forcing of the load, mass imbalance, or acceleration of the system as
a whole is taken into account.

After establishing in §2 the equations of the mathematical model, we report the
results of numerical integrations in §3 and in §4 indicate the way in which analytical
techniques, largely motivated and stimulated by the numerical results, have
revealed a more full qualitative picture of journal behaviour within the limits of the
model. Finally, in §5 we discuss the extent to which general concepts of dynamical
systems theory are useful in recognising crucial areas for future investigation.

2. Mathematical models

The configuration of the journal bearing is illustrated in figure 1, in which the main
physical dimensions and coordinate systems are indicated. We limit our attention to
purely two-dimensional motion of the rotor, and we assume that its rotation rate
about its centre A remains at the constant value v (i.e. we neglect any feedback on
the rotation of the rotor about its centre A as a result of the effect of tangential
viscous stresses, assuming that the rotor is driven at a constant speed at all times).
Thus the dynamics of the rotor are totally represented by the motion of A, and the
equations of motion take the form

é—ed? = @2 {cos ¢+ (SF,/ W)}, (2.1a)
ep+2ép = — @ {sin g — (SF,/ W)}, (2.1b)
where ¢ is the eccentricity ratio e/c, ¢ is the attitude angle, F,, F,, are the components
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cavitation region

oil supply —_

— film rupture position

w

Figure 1. Bearing configuration: bearing centre at 0, rotor centre at A, where 0A = ¢; radius of
rotor is R, of bearing is R+ c; rotational speed w; load W; hydrodynamic force components F,, Fy.

of the total fluid stress in the r and @ directions, and a dot denotes differentiation
with respect to the non-dimensional time 7 = wt. Additionally we have introduced
the non-dimensional parameters

S = LR3uw/Wc®  (the Sommerfeld number) (2.2)
and @ = w{mc/w}* (a non-dimensional rotation speed). (2.3)

The expressions giving F,, F, are obtained by integrating the pressure forces around
the rotor, thus

F = f pcosfds, Fy= f psinfds. (2.4)
A value of p is obtained from the Reynolds equation
0 2P| , (R O 20D\ [\ .
55{(1 +e€cosb) —a—é}+(z) > (1+€ecosf) %= 6S{ — (1 —2¢) sin 6+ 2¢ cos 6},
(2.5)
with appropriate boundary conditions for the non-dimensional pressure
p = p/po(R/c)*.

The choice of these boundary conditions constitutes a major difficulty for the
modeller. In practice any cavity which forms is far from two-dimensional and, even
in steady-state situations, usually consists of a number of discrete elongated bubbles,

Phil. Trans. R. Soc. Lond. A (1990)
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separated by narrow continuous streams of lubricant. In unsteady conditions, as
when the rotor centre describes some closed orbit, the appropriate boundary
conditions are even less clear and more research is needed.

Our aim in this paper, to expose the journal bearing as an interesting and
important problem in nonlinear dynamics, is equally well served by any reasonable
choice of cavitation boundary condition (though the actual solutions will of course
be much affected), and we refer the reader elsewhere for further details (Dowson &
Taylor 1979). The simplest realistic assumption is the so called ‘oscillating n-film’
condition, in which the cavity always occupies the region © < < 2x, corresponding

to
p=0 at =0, and m<6<2m. (2.6)

The outcome of this model, assuming a long-bearing approximation, i.e. neglecting
the second term on the left-hand side of equation (2.4), is a pair of expressions for F,,
F, of the form

F. = S{121e2(1 — 2¢) + 6[T*(2 +€2) — 16] (1 —€?) Fé}/m (2 +€) (1 —€?),  (2.7)
Fy = S{6me(1—e2)i (1 —26) + 2466}/ (2+62) (1 —€?), (2.8)

from which the strong nonlinearities of equations (2.1) follow. In engineering
practice, many journal bearings have asymmetries associated with slight departures
from exactly circular shape, typically in the form of steps or bulges in boundaries, or
with the presence of a lubricant inlet in the bearing. These asymmetries have an
influence on the flow patterns and pressure conditions, and hence on cavity
occurrence and extent. Though their direct effect is small, through these secondary
effects they may exert great influence on rotor stability, and mathematical models
have been used to explore this effect directly (Brindley et al. 19860b). The equations
of motion for bearing and fluid remain as (2.1) and (2.4), but the conditions on p now
become

p=0 at m=g¢,, the position of the lubricant inlet, (2.9)
together with
p2rn+0,) = p(0)—Ap, if p(d) >0 after applying (2.9), (2.10)
or
p2rn+6,) =p(0,) =0, if p(d) <0 after applying (2.9), (2.11)

where 6, is the position of a ‘step’ on the rotor.

Additionally, we set p(0) = 0 at all points for which a negative value is predicted
when carrying out the calculation of net forces on the rotor. The position of ¢;, which
‘locks” one end of the cavity, turns out to be crucial for stability ; the position 6, or
(@) of a step is less so, becoming important only when it significantly alters a cavity
size.

Fluid inertia effects with no cavitation

In this case the mathematical model can be expressed locally in the form of the

two-dimensional unsteady boundary-layer equations (Collins ef al. 1986)

2
(Bl 2) -2

ERE ”ay O ‘uéyz’
0 — o/, (2.12)
OQu/0x+0dv/0y = 0,
where x=(R+c)0, y=R+c—r, (2.13)

Phil. Trans. R. Soc. Lond. A (1990)
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6=0

( a) cavity 14 (b)

film start

fluid film

¢ film rupture 01 21+ 01

f=n

Figure 2. (@) Configuration for short bearing as described in text. (b) Pressure distribution, p(6). In
calculating the hydrodynamic force, p is set to zero in the range of @ for which a negative value is
obtained from equation (2.4).

subject to the boundary conditions
u=v=0 on y=0,
u=Rw, v=RwOh/0x+0h/0t on y=h(x,t)=c[(1+ecosf)+O0(c/R)],
(2.14)

expressing the full no-slip conditions at the rigid surfaces.
Additionally, since no cavitation is now assumed, we have

p(0) = p(2m). (2.15)

Again, expressions for ¥, F, are readily calculated but are rather complicated (Collins
et al. 1986).

3. Numerical integrations: a glimpse of the picture

The formidable complexities of equations (2.1) with any of the forms for F,, F,
arising from particular cavitation assumptions discourage an analytic approach,
and, as is the theme of this volume, progress was led by computational effort.
Numerical solutions of equation (2.1) for a full film (no cavitation) lubricant
invariably indicated failure of the bearing; whatever parameter values and starting
conditions where used, the resulting trajectory of the rotor led to collision with the
stator (Brindley et al. 1979). Cavitation sometimes permitted the existence of stable
equilibria or stable closed orbits (limit cycles) and the upshot of many computations
was a wide range of apparent behaviour. In addition to stable static states and
obvious catastrophic instabilities, small and large stable limit cycles were obtained,
and the existence of unstable limit cycles forming boundaries of basins of attraction
was surmised (Brindley et al. 1979, 1983, 19864, b).

We have examined a range of models, assuming several alternative boundary
conditions at the cavity—-lubricant interface. Results for the short bearing, operating
with a cavity occupying the region m+6, < 6 < 2n+6,, may be used to exemplify
the outcome (figure 2).

Here 6, is obtained by setting p = 0 at 6, in the integrated form of equation (2.4)
when the term in d/dé is neglected (short bearing approximation). In fact we find,
setting p=0at 2 =0,L,

cp _ 3z2(z—L) —e(w—2¢) sin O+ 2¢ cos 6
ul? L2 (1+€cos 6)? ’

Phil. Trans. R. Soc. Lond. A (1990)

(3.1)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

112 J. Brindley, M. D. Savage and C. M. Taylor
4 stability
curve
S <406
T <
—_ &
E S
< /”‘ L 7 &
] 7\ ‘QED unstable critical < 03 §
< BS frequency Pl
& 5
S E : r stable N
ez = -
O 1 1 ) | ] 1 ] 1 1 0
E ) 0 05 10
%)

eccentricity ratio, ¢,

Figure 3. Neutral stability curve as obtained by linear stability theory (upper curve, left-hand
scale) and critical frequency as described in §4 (lower curve, right-hand scale).
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— > 0 0.5 10
o — eccentricity ratio, ¢,
e = Figure 4. Neutral stability curve and operating curves for o = 0.06 and ¢ = 2.0. Supercritical
- 5 and subcritical Hopf bifurcations occur in the regions indicated.
= O which implies that . .
= tan 6, = 2¢/e(w—2¢). (3.2)

Note that, unlike the cruder half-film model for the long bearing, in which the
cavity occupies the region m < 8 < 2w, this model permits the cavity to move in
response to the dynamical behaviour of the rotor. The actual expressions for F,, F,
are very cumbersome and we do not reproduce them here.
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Figure 5. Orbits in the case o = 0.06. (a) & = 2.2, ¢,=0.9, ¢, =4.0; (b) ®=2.92, ¢, =0.8,
$o=0.7; (c) ®=2.92,¢6, =08, ¢y =0; (d) & =2.96, ¢, = 0.8, ¢, =0.7.

The consequence of a linear analysis of the stability of the equilibrium point (e,
@) is illustrated in figure 3. The abscissa, €, is, of course, not a directly controllable
parameter ; changes in a real system usually occur through changes in @, and, if all
other effects remain constant, it is convenient to define a ‘system parameter’, o =
L3Ru/(Fmc®):, which remains constant throughout the motion.

As @ increases we follow an ‘operating curve’ in the (e, @) plan as indicated in
figure 4 for two values o = 0.06, 2.0 respectively.

Traversing the curve o = 0.06, we find that, for points well below the neutral
stability curve, all orbits are attracted towards the unique steady state (¢, @) (figure
5a). When @ is near to @, the behaviour depends on initial conditions (e,, ¢,). For a
starting position near (e, ¢g), we find that orbits are attracted towards the
equilibrium point for @ < @, and towards a small-amplitude limit cycle for @ > @,
(figure 5b); for a starting position ‘far’ from (e;, ;) we find an attracting large
amplitude limit cycle (figure 5¢). When @ is considerably larger than @, the small
amplitude limit cycle disappears (though orbits stay close to it for a long time) and
all trajectories are attracted towards the large amplitude limit cycle (figure 5d).
Eventually as @ increases further this cycle ‘hits’ e = 1 and the bearing fails.

Phil. Trans. R. Soc. Lond. A (1990)
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i — 1
@ ik

Figure 6. Orbits in case o0 = 2.0. (a) @ = 1.0, ¢,
o =1.0; (¢) 5

When o = 2.0 we find, for small @, a universally stable equilibrium (e, @) as shown
in figure 6a. For larger @ < &, we find a coexisting stable large limit cycle, with final
state strongly dependent on initial conditions (figure 6b, ¢), and for @ > @, we find
just the stable large limit cycle, which, as in the earlier case, finally ‘hits’ the ¢ = 1
barrier. The bifurcational behaviour is summarized in figure 7.

4. Analytical methods

The numerical results, of which those in §3 resemble the tip of a rather large
iceberg, reveal a very rich and complex pattern of behaviour, even in this simplest
case of an unforced, perfectly balanced, rotor. By their indication of multiple
attractors, subcritical as well as supercritical bifurcations, and sensitive dependence
on parameter and initial values, they act to stimulate and motivate analytical
approaches which might illuminate the global behaviour more fully.

Two lines have been followed ; firstly a rigorous approach using the general ideas
of bifurcation theory, which is mathematically sound but, in an engineering sense,
limited in its range of applicability; secondly an approach in which approximate
methods, plausible but on the whole non-rigorous, promise results with a much wider

Phil. Trans. R. Soc. Lond. A (1990)
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non-dimensional rotor speed, @

Figure 7. Schematic summary of system behaviour close to the threshold speed for
the cases (@) o =2 and (b) o = 0.06. , stable; ———, unstable.

range of use for application. All rigorous approaches are pivoted about the
equilibrium state (or states), i.e. solutions of equation (2.1) in which all time
derivatives are set to zero. An elementary linear stability analysis quickly reveals
neutral stability surfaces in parameter space; a projection of such a surface appears
in figure 3. The form of the characteristic equation guarantees that stability is lost
when a complex conjugate pair of eigenvalues crosses the imaginary axis with non-
vanishing imaginary part, €, say.

The value of the ‘whirl’ frequency is also plotted in figure 3, where we have

introduced the non-dimensional B
Q=Q/w (4.1)

for most of the range of ¢, the value of Q is near to 0.5, falling rapidly to zero as
es—0.75.

The conditions for Hopf bifurcation are met in general, and application of the
theory (Gardner et al. 1985) reveals that the neutral stability curve may be divided
into regions of supercritical bifurcation or subcritical bifurcation, at which stable or
unstable limit cycles are shed respectively from the equilibrium point (g, ¢5). These
results are confirmed and extended to predict the development of small amplitude
limit cycles by a multiple scales approach. Numerical continuation methods
(Brindley et al. 1989) may also be used to extend the bifurcation picture. Good
agreement with numerical results is found. Analytical methods for predicting and
describing the large amplitude orbits shown in numerical computations are less well
advanced and have a much less secure theoretical basis. For this reason they merit
a rather more substantial description and justification. A complete exposition will
appear elsewhere (Savage et al. 1990).

In essence we have used an extension of the harmonic balance method to
incorporate higher harmonics and slowly varying amplitudes and phases; we have
tentatively called it ‘harmonic balance with two timescales’. The approach may be
demonstrated by considering a dynamical system of the form

i+ 0’ = g(x, 2,1), (4.2)
where ¢ is sufficiently smooth and 7-periodic in f. It is usual for perturbation
techniques to be applied to systems of the form

i+ w’x = ef(x, 2, 1), (4.3)
Phil. Trans. R. Soc. Lond. A (1990)
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where f is T-periodic and € is an explicit small parameter. Here we rewrite equation
(4.2) as P4 wlr = /Zf(%, x,t), (4'4)

where 7 is an implicit small parameter. Next we assume the solution is dominated by
the first harmonic, of frequency w, with slowly varying amplitude R and phase ¢,

namely x(t) = R(1) cos (ws+ (1)), (4.5)

where s and 7 are fast and slow times respectively. In general there will also be a mean
(constant or time varying) of the same order as the first harmonic.

Higher harmonics or subharmonics may be readily included, the latter by, for
example, taking a form

i kws
x(t) = Z(1)+ X A, (T) cos - + (1)1, (4.6)
k=0
to truncate the expansion at the mth harmonic.
We now associate the parameter, x4, with the slow timescale, writing

s=t and T=ut, (4.7)
so that equation (4.2) becomes

2+ wx = —2u 02" /0T + puf(x, ' + p Ox /01, 8) + O(4?), (4.8)

where the dash indicates differentiation with respect to s. Finally, on expanding the
right-hand side of equation (4.2) as a Fourier series, we find,

oc
2"+ = p X {a,(7) cos nws+ b, (1) sin nws}. (4.9)
k=0
The complementary function of (4.9) gives rise to a first harmonic solution, whilst the
right-hand side generates higher harmonics of O(u) as particular integrals. Hence we
see that the assumption that x is small is the mathematical statement of the fact that
the fundamental mode dominates the solution. This implicit small parameter means
that we can use the method for arbitrary values of other quantities, such as the
amplitude of the orbit or the value of w—w, provided that the orbit is well
approximated by a single mode.

The removal of secular terms arising from the presence of cosw, and sin w, terms
on the right-hand side of (4.9) then gives evolution equations for 4(r) and ¢,(7) in the
usual way. These equations yield results not only for amplitude, but also for
stability, and their usefulness with great economy of effort is demonstrated in figure
8, where results for a single term of equation (4.6), i.e. m = n = 0, are compared with
the results obtained by numerical path following techniques in the case of a long
bearing approximation with oscillating w-film.

5. Discussion and future development

The journal bearing models we have described comprise a fourth-order nonlinear
system of ordinary differential equations (in which the fluid forces are of course
consequences of the approximate solution of partial differential equations). We have
restricted attention to autonomous equations, and numerical results have prompted
the analytical exposure of some of the phenomena characteristic of such a system,

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 8. Bifurcation diagrams for ¢,, = 0.6 and ¢,, = 0.76 obtained (a), (b) by using a single term
of equation (4.6), and (c), (d) by full numerical solution of the problem. , stable solution; ——-,
unstable solution. For () and (¢) w, = 1.37, for (b) and (d) w, = 2.57.

particularly multiple equilibria, both static and dynamic. Subcritical bifurcations to
unstable limit cycles have been identified commonly, and the outlines of a parameter
space map of behaviour is clear. Parallel investigations on differing mathematical
models arising mainly from alternative cavitation conditions, or the effect of shaft
flexibility, have been carried out or are in hand. Though there are very large
difference in the position and extent in parameter space of regions with a particular
qualitative behaviour, the broad picture is similar (e.g. figure 9) in all cases we have
studied.

Interestingly, a quite different nonlinearity, arising from inertia forces in the fluid,
is important at relatively low values of w, and acts to stabilize the equilibrium state
in certain circumstances (Collins et al. 1986).

For the practising engineer much of value has already emerged, and potential
danger areas in parameter space have been pointed. The real challenge, however, still
exists, in the form of realistic modelling of the time-dependence of the physical
influences. Not only is the load normally a strongly time-varying quantity, quite
independently of the motion of the rotor, but dynamic imbalance of the rotor and the
use of proper dynamic boundary conditions on the pressure in the lubricant (with
subsequent effects on the cavity behaviour) both introduce forcing at the a priori
unknown frequency of description of any closed orbit. Dynamic imbalance of the
rotor of course implies forcing at the imposed speed, w, of rotation; analysis of this
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Figure 9. Neutral stability curve for long bearing approximation using the Reynolds boundary
condition (oscillatory film, boundary conditions p = 0 at @ = 0 and p = dp/df = 0 at § = 6,, where

0, is found by solving p(6,) = 0). Regions of supercritical and subcritical Hopf bifurcation
indicated.

situation, revealing the expected resonance horns, and a very complex bifurcation
picture, has recently been carried out for the long bearing oscillating half film model
(Shaw 1989). Much more remains to be done.

The research reported in this paper has benefited from contributions by a number of colleagues,
particularly David Collins, Mark Gardner, John McKay and Chris Myers, all sometime research
students with us, supported by grants from SERC.
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